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The dissolution times of spherical particles 
K. RIDGWAY A N D  D. G. PEACOCK 

Department of Pharmaceutics, The School of Pharmacy, Brunswick Square, 
London WClN lAX, U.K. 

The differential equation governing the rate of change of radius of 
a spherical particle dissolving or growing in a fluid has been numeri- 
cally integrated by computer. The particle radius, as a function of 
time, can thus be calculated, and the dependence of the overall 
particle lifetime upon physical parameters obtained. The effects of 
high mass flux, change of solubility with particle size, and pro- 
gressive saturation due to dissolution into a finite volume of liquid 
can all be taken into account during the integration process. 
Results are presented for salicylic, boric and citric acids dissolving 
in and crystallizing from water; these represent the behaviour of 
sparingly soluble, moderately soluble and very soluble compounds 
respectively. 

The rate of dissolution of a particle in a liquid, the rate of growth of a crystal from 
a supersaturated solution, and the rate of evaporation of liquid from an atomized 
droplet in a spray drier or an aerosol spray, are all examples of high mass transfer 
rate processes. In this context high mass transfer rate means that the normal 
equations for the slow diffusion of a substance through a stagnant boundary layer 
do not apply, either because the movement of the transported substance itself disturbs 
the boundary layer, or because, as the phase change occurs, the surface of the particle 
recedes or advances relative to the instantaneous position of the interface between 
the phases. Ideally, for simulation calculation purposes, the particles should be 
spherical. 

Differential equations governing the diffusion-controlled growth or dissolution of 
spheres in the absence of hydrodynamic instabilities have been derived by Readey & 
Cooper (1966). These authors assumed that the interface reaction was virtually 
instantaneous, i.e. that, for dissolution, the liquid adjacent to the surface was 
saturated with the solid. Composition-independent diffusion coefficients, and 
ideality of partial specific volumes of the solute and solvent with respect to concentra- 
tion change, were also assumed. 

Cable & Evans (1967) extended the work of the above authors and gave some 
computer solutions for dissolution by widening the ranges of the numerical factors, 
and by comparing their solutions with those of Scriven (1959) for growth from zero 
size. It became apparent that differences between the numerical computer solutions 
could easily arise, due to starting, iterative and discretization errors. Thus Duda & 
Vrentas (1969), who were interested in the growth and dissolution of bubbles, 
indicated that they disagreed in some quantitative respects with the results of Cable 
& Evans, whilst they in their turn have been criticized by Rosner (1969), for the same 
reason. Rosner has reviewed the earlier work, and has suggested an equation 
governing the rate of change of size; he has also obtained a solution for the overall 
particle lifetime, under dissolution conditions, in closed form for constant parameter 
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values. In a recent paper, Rosner & Epstein (1970) have included the effect of inter- 
face kinetic limitations, and have shown how to use the integral profile method 
(Goodman, 1964) in this field of non-linear moving-boundary problems. 

Z 
L 0 4 Csat 

FIG. 1. Dissolution of a spherical particle. For explanation of symbols see text following 
equation (4). 

Fig. 1 illustrates transfer of material, in dissolution, from the particle to the solvent 
phase (in growth, the transfer direction will be reversed). Dissolved material moves 
away into the bulk solution under the influence of the concentration gradient shown 
in the figure. If the rate of diffusional transport is large, the assumption of equili- 
brium at the solid-liquid interface may be incorrect, because dissolution rate may 
then become the controlling factor. Under such conditions Rosner (1969) has 
derived the equations which govern the behaviour of the particle. They are: 

- - - Dp In (*) . .  
dr 
dt rp, 1 - c, 

and 

k (csat - c,)p = 

. .  .. . . (1) 

where r is the particle radius at  any time t ,  D is the diffusivity of the solute, p is the 
density of the solvent and ps that of the solute, k is the rate constant governing the 
interface kinetics, which may or may not be the same for dissolution and for growth, 
and p is the exponent on the mass transfer driving force, which has been shown to 
range from 1.0 to 1.8 (Strickland-Constable, 1968). Rosner dealt only withp = 1.0. 

The remaining symbols are the concentration terms: csat is the concentration of a 
saturated solution, c, the concentration at the interface between solid and liquid, 
and c, the bulk concentration in the liquid phase at a large distance from the 
dissolving particle. 

The logarithmic term is the concentration driving force, in a form suitable for 
diffusional transport at high mass flux (Spalding, 1963). Both equations must be 
satisfied together, that is, the instantaneous rate of change of r with t must be as 
given by equation (1) with the appropriate value of r and of c,; the value of c, must 
satisfy equation (2). In addition, the value of csat may be changed during the 
integration due to the increase in solubility caused by diminishing particle size: this 
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is discussed more fully later. The value of c, will also change if the volume of 
solvent is finite, and this also must be allowed for. 

The major restriction on computer simulations of the type considered here is the 
lack of data: solubility, density and diffusivity in a particular solvent are rarely all 
available for any but simple substances. However, empirical correlations exist from 
which diffusivities can be estimated, and which are usually accurate to within lo%, 
at least for dilute solutions of non-dissociating solutes. 

Wilke & Chang (1955) give perhaps the best such equation: 

where D is the required diffusivity of the solute in cm2 s-l, the molar volume of the 
solute being V cm3, M is its molecular weight, T is the absolute temperature, p is 
the solvent viscosity (in cP), and # is an “association parameter” for the solvent, 
which has the values 2.6 for water, 1.9 for methanol, 1.5 for ethanol and 1.0 for 
benzene and non-polar solvents generally. 

There are several pharmaceutical examples of particulate mass transfer relevant 
to the technique reported here. Gwilt, Robertson & others (1963) reported increased 
rates of paracetamol absorption in vivo when sorbitol was added to the tablets; 
Walters (1968) showed that no complex was formed between paracetamol and 
sorbitol and suggested that a higher dissolution rate must therefore be responsible 
for the increase. Any rapidly-dissolving adjuvant should increase the dissolution 
rate of a drug, by increasing the overall mass transfer rate out of the tablet, and 
such aided dissolution could be simulated using the method of the present paper. 

Although dissolution-limited absorption rates are usually reported only for 
sparingly-soluble drugs, dissolution rate can control the absorption of sodium 
p-aminosalicylate and acetylsalicylic acid, and for aspirin formulations at least, 
in vitro dissolution rates can be correlated with rates of absorption (Levy, Leonards 
& Procknal, 1967). For griseofulvin, absorption rates increase with the addition of 
lactose to the tablet formulation, the mechanism of increase being either the improve- 
ment of wetting or increased mass transfer (M. H. Rubinstein, personal com- 
munication). 

The dissolution of fat globules in the gut by the action of lipases may well be 
mass-transfer limited; it is known to be assisted by the presence of bile salts, proteins 
and soaps, but the difficulty here is to obtain data for the physical properties of such 
a complex system. 

The most promising field for calculations of particle lifetime is in the Ostwald 
ripening process, whereby crystalline precipitates of small particle size can be altered 
so that they contain fewer, but larger particles. In a slightly supersaturated mother 
liquor, the small crystals, which are more soluble, tend to dissolve, and the larger 
crystals, which are less soluble, to grow. The relation between size and solubility 
is due to Ostwald, but a modern discussion is given by Mullin (1961). The basic 
equation is 

where csat is the concentration of a solution in equilibrium with crystals of radius r, 
c*sat is the equilibrium solubility of large crystals, M is the molecular weight, CI 

the surface energy, R the gas constant, T the absolute temperature, and pis the density 
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of the solid. The effect of Ostwald ripening is enhanced by “temperature cycling”. 
The temperature of the crystals and mother liquor is increased and decreased at a 
slow rate, keeping the mean temperature at about the level required for crystalliza- 
tion; the dissolution of small crystals and the growth of larger ones then occur at 
an increased rate. Rate determinations have been made for sulphathiazole by 
Carless & Foster (1966) and by Varney (1967) for the same drug and for oxy- 
clozamide. Varney describes an automatic cycling device for implementing the 
method. Carless & Foster noted the peculiar fact that the rate of particle growth 
was decreased by the addition of cetomacrogol to the solution, despite the resultant 
increase in the solubility of the drug. This could be due to a diffusivity change. 

Computation 

Equation (1) was integrated by the Runge-Kutta method, the inaccuracy due to 
truncation error being checked by doubling the integration step length. Apart 
from this control, the step length was adjusted as the dissolution (or growth) 
proceeded, to provide output information at appropriate intervals. At each radius 
considered, the equilibrium solubility Csat was calculated from equation (4) ; c, 
was calculated by a mass balance, assuming for this purpose that all the dissolved 
solute was distributed uniformly through the liquid bulk-an assumption reasonable 
enough in most cases but open to question where a highly soluble solute is present 
in a severely restricted volume of liquid. 

The interface concentration c, was calculated for each radius as follows: Equation 
(2) may be expressed, for dissolution, in the form: 

a corresponding relation existing for the growth case where csat < c,. By differ- 
entiation : 

.. (E),= % (Gat - c,)”-l + - 1 
1 - c, 

and an estimate of c, may be improved by the use of the recurrence formula: 

where n is the number of iterations. This formula was used repeatedly until both 
c, and the relevant logarithmic term in equation (1) were constant within acceptable 
limits (a final relative correction <0.0005 was accepted). Convergence was good; 
typically 10 to 20 iterations were required to find c, initially, then 2 or 3 iterations 
for each value of r as the latter changed progressively. 

RESULTS A N D  DISCUSSION 

The physical properties of the pure compounds are listed in Table 1 : diffusivities 
given are those calculated by using the Wilke & Chang equation; the solubilities 
are experimental values obtained from the literature (Mullin, 1961). 

Table 2 lists the results of calculations of particle dissolution lifetimes, and Table 3 
the times taken to grow to a radius of 1 mm from an initial size of 1 . 1  times the 
critical radius (defined as the radius at which the particle is just in equilibrium with the 
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Table 1. Physical properties of the three compounds studied. 

Molecular Density Molar vol. 
weight kg m-3 m3 kmol-l 

Boric acid . .  . . 61.9 1435 0.0393 
Citric acid monohydrate . . 210.1 1542 0.1723 
Salicylic acid . . . .  . . 138.1 1443 0.1350 

Acid Temperature “C 
10 20 30 40 60 

Solubility mass Boric 0.0347 0.0476 0.0619 0.0800 0.1289 
fraction Citric 0.5921 0.6492 0.7073 0.7466 0.8037 

Salicylic 0.001 50 0.00200 0.00279 0.00418 0.00902 

Diffusivity Boric 1.212 1.632 2.119 2.672 3.977 
m2 s-l x lo0 Citric 0.499 0.673 0.873 1.101 1.638 

Salicylic 0.578 0.779 1.011 1.274 1.897 

Viscosity Water 1.308 1.005 0.801 0.656 0.469 
kgm-ls-l x lo3 

Solvent association parameter for water = 2.6. 

80 
0.1922 
0.8621 
0.0221 

5.544 
2.284 
2.644 

0.357 

Table 2. Particle lifetimes in dissolution for various values of the parameters which 
govern the dissolution rate. 

“C 
10 
20 
30 

57 
80 

40 
40 
40 

40 

40 
40 
40 
40 

40 
40 
40 
40 
40 
40 

40 

k 
(m s-l) 
25 
25 
25 

2 
25 

25 
25 
25 

25 

25 
25 
25 
25 

0.01 
0.01 
0.01 
0.10 
0.10 
0.50 

0 

(J m-2) 
0.2 
0.2 
0.2 
0.21 
0.2 
0.2 

0.2 
0.2 
0.2 

0.02-10 

0.2 
0.2 
0.2 
0.2 

0.2 
0.2 
0.2 
0.2 
0.2 
0.2 

0.01-25 0.2 

P 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1 .o 
1.4 
1.8 
2.0 
3.0 

1.8 
2.0 
3.0 
2.0 
3.0 
3.0 

1 .o 

1 .O$ 

Lifetime Lifetime 
Initial Salicylic acid Boric acid 

phase ratio 6) 6) 
infinite* 832 851 16 740 
infinite 463 807 9008 
infinite 255 341 5298 
infinite$ 135 103$ 32191 
infinite 41 989 1307 
infinite 12 210 606 

large* 202 011 4878 
medium* 463 325 11 357 
small* 1 250 312 30 941 

infinite 135 107-134 909 3219-3217 

infinite 135 109 3219 
infinite 135 293 
infinite 135 736 
infinite 161 372 

3221 
3225 
3326 

infinite 150 638 3374 
infinite 171 103 3495 
infinite 2 349 248 5155 
infinite 145 502 3304 
infinite 495 260 3974 
infinite 275 713 3636 

infinite 135 138-135 103 3221-3219 

Lifetime 
Citric acid 

monohydrate 
6) 

1722 
1094 
719 
5103 
289 
170 

1007 
2831 
8107 

510-508 

510 
510 
51 1 
517 

525 
534 
604 
518 
554 
536 

511-510 

* The term infinite denotes that calculations were based on lo8 kg of water per particle. Large, 
medium and small denote that the amount of water was such that, on complete dissolution of 
the particle, the water contained respectively 50 %, 90 % and 99 % of the solute required to saturate 
it. At the start of the dissolution process the water was free of solute. 

$, “Pivotal” case. 
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supersaturated solution, so that it neither grows nor dissolves; the increase in solubility 
caused by the curvature of its surface is just equal to the degree of supersaturation 
of its environment). For all the growth cases, the amount of solute initially was 
2 %  more than the amount needed to saturate the water present. 

For all these data the conditions for dissolution are for a stationary particle 
surrounded by solvent, and no relative motion between the solid and liquid phases is 
assumed. This is not a restrictive condition when comparing one substance with 
another, but in predicting actual dissolution times the data here yield the longest 
time that dissolution could be expected to take. Any stirring or other movement 
would effectively increase the diffusivity from the molecular motion figure used here 
to a value appropriate to the eddying turbulent conditions caused by the stirring. 
This change in effective diffusivity could have been predicted, although not very 
accurately, by using known correlations based upon the Reynolds, Sherwood, 
Schmidt and Prandtl dimensionless groups (see for example Treybal, 1955). But 
since 
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FIG. 2. 
were as shown; other conditions “pivotal.” 

Particle dissolution: (a) salicylic acid, (b) boric acid, (c) citric acid. Temperatures 
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rather than upon what substances were being used, there would be little effect for 
comparative purposes. In consequence this parameter was not varied. 

Because of the limited time available, all possible combinations of parameters 
were not inspected. For each substance, a “pivotal” case was chosen. This was 
at  40°, the middle of the temperature range, and the other factors were set at con- 
venient levels in their ranges: (J at 0-2 J m-2, k at 25 m s-l, p at 1.0, c,  at zero for 
dissolution, and the phase ratio, the amount of solvent per unit mass of the solute, 
was made effectively infinite. 

The dissolution rates of the three substances at various temperatures are plotted 
in Fig. 2, and Fig. 3 shows growth curves for boric acid only. The increased rate 
of reduction of radius near the end of the dissolution process is affected by the value 
of (J, the surface energy. This is not an easily-determined quantity for solids. It 
is analogous to the surface tension of a liquid, the presumption being that the surface 
tension does not disappear when a liquid solidifies, but is “locked in”. The normal 
methods of surface tension determination are not applicable to solids, and the 
methods that are available are inaccurate. They are all based upon scratching, 
indentation or attrition. An account in detail is given by Kuznetsov (1957) who 
quotes values of a few hundred ergs cm-2 (mJ m-2) for some substances, but rising 
to well over 1 J m-2 for results obtained by some of the methods. These are scarcely 
credible, as can be seen by an examination of the effects of varying (J, particularly 
in the case of the calculations performed for growth rates. In the present paper the 
initial size of the sphere considered has been taken to be a radius 10% greater than 
the critical size. 

It was suggested by Strickland-Constable (1968), as a result of measuring the 
sublimation and deposition rates of benzophenone, that growth rates, and probably 
evaporation rates, were not first order processes. It is known (Mullin, 1961) that a 

40 80 120 160 
Time (ks) 

FIG. 3. Radius 
of nucleus at f = 0 was 1.1 x the critical size. Temperatures were as shown; other conditions 
“pivotal.” 

Particle growth: spherical particle of boric acid in a 2 % supersaturated solution. 
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FIG. 4. The relation between growth or dissolution and concentration difference: (a) sublima- 
tion and deposition from the vapour phase (after Strickland-Constable)-AA linear (first-order) 
mechanism. BB higher-order mechanism. (b) dissolution, and growth from solution: dissolu- 
tion is a first-order process, whereas solid deposition needs a finite concentration difference to 
begin, and then follows a power-law relation with exponent greater than unity. 

finite degree of supersaturation is necessary to initiate crystal growth from solution, 
and that the growth rate is often proportional to the degree of supersaturation raised 
to a power of approximately 1.6. 

For 
sublimation and condensation on the Strickland-Constable model, the line AA in 
Fig. 4(a) shows the linear dependence of growth or evaporation upon concentration 
differences when first-order kinetics apply. For higher-order kinetics, curves such 
as BB are obtained. Crystallization behaviour usually resembles Fig. 4(b), where 
dissolution is a first-order process and yields a straight line, but the growth process 
requires a finite supersaturation for initiation ; it then proceeds with a power-law 
relation in which the exponent is greater than unity. Both these types of behaviour 
are easily simulated by the numerical technique used in the present work, although 
such additions make it much more difficult to find an analytic solution to the differ- 
ential equations which are being obeyed. 

The effect of varying both the surface kinetics constant, k, and the exponent on 
the concentration difference term, p,  is shown in Fig. 5. For values of k and p 
near the pivotal values of 25 m s-' and 1.0, the curves of saturation concentration 
and interface concentration against particle radius follow one another closely down 
to the critical radius. With the higher values of p ,  however, there is a divergence, 
indicating that the rise in solubility at small particle size is less closely followed at  
the interface-as might be expected. When k also has a small value, the effect is 
enhanced. Even with the rise in solubility, interface concentration falls, because 
the surface kinetic step of removing a molecule from the crystal lattice into the 
solution is limiting. When k is reduced to 0.01, a value admittedly outside the 
normal range of 0.1-100, the effect of k overshadows that of p ,  so that the curves 
for p = 2.0 and p = 3.0 are less divergent from one another than both are from 
the csat curves. 

Fig. 6 shows some plots of particle growth at  extreme values of the parameters 
k and p. Those of Fig. 6(a) are for boric acid, and show the interface concentration 
and solubility as a function of particle radius during the growth process. Citric acid 

These two types of behaviour lead to plots of the kind shown in Fig. 4. 
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FIG. 5. 
Conditions “pivotal” except where stated. 
0 surface solubility, A interface concentration. 
0 surface solubility, A interface concentration, p = 2.0, interface concentration, p = 3.0. 

Particle dissolution : solubility Csat and interface concentration c, versus particle radius. 
(a) citric acid dissolution; k = 25 m s s l ,  p = 3 . G  

(b) citric acid dissolution; k = 0.01 m s-l- 

Particle radius (cm) 

FIG. 6. Particle growth: conditions “pivotal” except where stated. (a) Solubility cgat  and 
interface concentration c, versus particle radius; boric acid, k = 1.0, p = 3.G. surface solubility, 

interface concentration. For 
values of the parameter near to unity, surface-kinetic control operates; for values near zero, 
diffusion is the limiting factor-0 citric acid, A boric acid. 

(b) The parameter (Cgat - ,cw)/(csat - COO) versus particle radius. 

behaves similarly, but the solubility of salicylic acid is so small that for values of p 
approaching 3.0 the growth time becomes extremely large (>lo6 years). This 
reflects the fact that, because solute molecules are present only in very low con- 
centrations, any process which is governed by third-order kinetics and so depends 
upon the occurrence of intermolecular collisions is bound to be extremely slow. 

The variation of the quotient (csat - cW)/(cBat - c,) with particle radius is shown 
in Fig. 6(b). This quotient measures the division of the driving force, for either 
growth or dissolution, between the immediate neighbourhood of the solid surface, 
which is the kinetically-controlled region, and the boundary layer, which is the 
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diffusion-controlled region. Values near unity indicate surface control, and values 
near zero, diffusional limitation. For the cases shown here, both the boric acid and 
the citric acid growth processes change their limiting mechanism as the particle 
radius increases. 

In conclusion, it appears that the simulation algorithm reported here is reliable 
over a wide range of the main parameters which influence the rate of the crystalliza- 
tion and dissolution processes. It should be useful in  evaluating experimental data 
for various substances, particularly for nucleation phenomena and particle growth 
at small radii; in addition, extensions of the technique may in future prove valuable 
in the study of Ostwald ripening. 
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